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Preface

The uniformly distributed sequences have numerous applications
in many branches of science as numerical methods, physics, financial
mathematics, cryptography and others. This drives the significant

scientific interest in these mathematical objects.
The thesis is organized as Preface, three chapters and References.

The first chapter has an auxiliary character. Here the definitions
and properties of some classes of complete orthonormal function sys-
tems are presented. All considered function systems are constructed
using Cantor number system. The definitions of the Vilenkin func-
tions, the Haar functions and the B;—adic functions constructed in
Cantor system are also reviewed. Additionally, here some elements
of the theory of the uniformly distributed sequences are presented.

Some quantitative measures for the irregularity of the distribution of

4
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sequences are also considered.

In the second chapter some applications of the functions of the
system I'z, to the theory of uniformly distributed sequences are shown.
The notion of multidimensional modified integrals of the functions of
the system I'g, is introduced. Some classical results of the theory
of the uniformly distributed sequences are presented in terms of the
introduced modified integrals.

The third chapter considers some applications of the functions of
the system I's, to the quasi-Monte Carlo integration in reproducing
kernel Sobolev space. The notion of the mean square wort-case error
of the integration, which is based on the arithmetic related with the
functions of the system I's_, is introduced. Some details related to
this notion are presented. Two types of reproducing kernel weighted
Sobolev spaces - unanchored and anchored are considered. The exact
formulas for the mean square wort-case error of the integration in
these spaces are proved. The notions of the weighted unanchored and
the weighted anchored diaphony are introduced. The mean square
wort-case errors of the integration in considered spaces are presented

in terms of the corresponding versions of the diaphony.



Chapter 1

Some preliminary notations
and statements

In this chapter of the thesis, we present the definitions and their
main properties of the functions of some classes of complete orthonor-
mal function systems constructed in Cantor systems.

Let s > 1 be a fixed integer, which will denote the dimension

through the thesis.

1.1 Some notes about the Cantor number
systems

The so-called Cantor systems are quite natural generalizations of

the ordinary b—adic number system. The main components of the

6



1.1. SOME NOTES ABOUT THE CANTOR NUMBER SYSTEMS7

b—adic number system are the base b > 2, which is a fixed integer, the
set {0,1,...,b— 1} of the b—adic digits and the consecutive powers of
b, thus the set {1 =% b,07,...}.

We can consider the Cantor systems as systems with variable bases.

Thus, to the base b corresponds a sequence of bases
B:{bo,bl,...lbi 22for120}

To the successive degrees of the base b corresponds the so-called gener-
alized powers. Thus, we have the following correspondences: to b = 1
corresponds By = 1; to b' = b corresponds B; = by; to b> = b.b
corresponds By = by.by and so one. In this way, to the sequence B
corresponds the sequence { By, By, Bs, ...} of the so-called generalized

powers, defined in the following recursive manner:
B() =1 and for ¢ Z 0 Bi+1 = szz

For the Cantor system with the above components we will use the
notion B—adic number system.
An arbitrary integer number k£ > 0 has the unique B—adic repre-

sentation of the form

=0
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where for 0 < i < v we have that k; € {0,1,...,b; — 1} and k, # 0.
An arbitrary real number z € [0, 1) has the B—adic representation

of the form

o0
Z;

P By’
where for i > 0 we have that x; € {0,1,...,b; — 1}. In the additional

Tr =

assumption, that for infinitely many indexes ¢ x; # b; — 1 the above
representation is also unique.

We will call that the above expressions are the B—adic represen-
tations of the integer k£ and the real x.

Now, we will give the concepts of the multidimensional Cantor

systems. For this purpose, for 1 < j < s let

B = {09, . b9 > 2 for i >0}
be given sequences of bases and to denote By = (By, ..., By).

In every concrete case, we will use the multidimensional Cantor

systems B, to construct the corresponding function system.

1.2 Some classes of complete orthonormal
function systems

In this paragraph, the constructions and the properties of some
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classes of complete orthonormal function systems are presented.

1.3 The function system [',

1.3.1 Definition and properties of the functions of
the system I'p,

In 2021 Petrova [Pe 1] proposed the concept of a new function
system constructed in Bs—adic Cantor system, which is a naturale
generalization of the system I'y,.

Definition 1.8 For an arbitrary integer k > 0 and a real number

x € [0,1) with the B-adic representations

o0
X

kzzy:kiBi and r =

=0

where for i > 0 k;, x; € {0,1,...,b; — 1}, k, # 0 and for infinitely

Biyq’
i=0 it

many i we have x; # b; — 1, the k-th function v, : [0,1) — C is
defined as

i m kil ky
nyk(x) _ 627”(B1+BQ ...+ Bl,+1)(IUBU+IlBl+“‘+z”B”).

The set I'p = {,m(z) : k € No, x € [0,1)} is called B—adic

function system.
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Let the set B; = (By,...,Bs) be as above. We will present the

concept of the multidimensional B;—adic functions.

Definition 1.9 For an arbitrary vector k = (ky,...,ks) € N§ the

k—th function , y :[0,1)° — C is defined as

s

o) =[] (). x=(21,....2) €[0,1)",
j=1
The set T'p, = {;,(x) : k € N, x € [0,1)°} is called B,—adic

function system.

1.4 Uniformly distributed sequences

The object of the scientific discipline called a theory of the uni-
formly distributed sequences is the investigation of the distribution of
the partial parts of the real numbers in the unit interval [0, 1). The an-
cestor of this discipline is the German mathematician Herman Weyl.
In his important paper of 1916 "Uber die Gleichverteilung von Zahlen
mod Fins" he contemplated an attempt to specify the approximation
theorem of Kronecker and the future development of the theory of the

Diophantine approximations.
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1.4.1 Definition of the notion uniformly dis-
tributed sequence

Let a = (aj,...,as) and b = (by,...,bs) be two vectors with real
coordinates, i. e. a,b € R®. We will call that a < b if for each
1 < j < s the inequalities a; < b; hold. The set of points x € R* such
that a < x < b we will denote by [a, b).

For an arbitrary vector x = (z1,...,z5) € R its integer part
will be [x] = ([z1],...,[zrs]) and the fractional part of x is {x} =
{1}, - {ws}).

Let £ = (Xn)n>0 be an arbitrary sequence of vectors in R®. Let
J = f[[aj,bj), where for 1 < j <50 <a; <b; <1, be an arbitrary

j=1

s

subinterval of [0, 1)* with a volume p(J) = H<bj—aj)‘ For an arbitrary
j=1
positive integer number N let as above

A(J;N;€) =#{x,: 0<n <N -1, {x,} € J}.

In the following definition the concept of uniformly distributed

sequence is presented:

Definition 1.11 The sequence & = (X,)n>0 of vectors is called
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uniformly distributed modulus 1 in R® if the limit equality

A(J; N;
J&ij&%:“(‘])

holds for each subinterval J of [0, 1)°.

1.4.2 Integral Weyl’s criterion

In this section the main important result of the theory of the uni-
formly distributed sequences is the so-called integral Weyl’s criterion

is exposed.

1.4.3 Exponential Weyl’s criterion

In this section the so-called exponential Weyl’s criterion, is pre-

sented.

1.4.4 Some quantitative characteristics for the ir-
regularity of the distributions of sequences

In Definitions 1.11 the concept of uniformly distributed sequence
was presented. In fact, this definition presents the idea for the ideal
uniform distribution. But in the analytical nature of the construc-

tion of each sequence an insurmountable irregularity is staked. In
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this sense, each sequence has own concrete distribution, which distin-
guishes from the ideal uniform distribution.

In the theory of the uniformly distributed sequences, the degree of
deviation of the distribution of a concrete sequence from the ideal dis-
tribution is measured with special quantitative measures. In practice,
they give quantitative estimation of inevitable quality called irregu-
larity of the distribution. In general, these quantitative measures are
different types of the discrepancy and the diaphony.

Let & = (x,)n>0 be an arbitrary sequence of points in R®. For an

arbitrary subinterval J of [0,1)® and each integer N > 1 the quantity

J;N;€)

R(J;N;§) = Al N Hs(),

where p5(.J) is the Lebesgue measure of the interval J, is called local
discrepancy of the sequence £. By taking different norms of the local
discrepancy, for example the L,—norm, 1 < p < oo, the L, —norm,
we obtain different kinds of the discrepancy.

Let J and J* denote the sets of subintervals of [0, 1)® respectively
of the form J = f[[uj,vj) and J* = ﬁ[O,vj), where for 1 < j <'s
0<u <v; < 1].211?01“ an arbitrary Ve]c:tlor x = (1,...,25) € [0,1)*

let us denote [0,x) = [0,21) X ... X [0,z5). We will give the following
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definitions:

Definition 1.12 For each integer number N > 1 the extreme dis-
crepancy Dy (&), the star-discrepancy Dy (§) and the quadratic dis-
crepancy Ty (&) of the first N elements of the sequence & are defined

respectively as

pai§ — g AL
JeJg
A(J* N
Die) = sup | AT
JreJ*
and
. 2 :
Tn(E) = (/[07115 w—xl...% dxl...dxs> )

Well known is the following result:

Theorem 1.1 The sequence & is uniformly distributed modulus 1 in

R* if and only if one of the following equivalent limit equalities hold

lim Dy(§) =0, A};m Dy(§) =0u lim Tx(&) =0.

N—oo N—oo



Chapter 2

The Bs—adic functions and
uniform distribution of
sequences

2.1 Notices connected with some classical
quantitative results of the theory of the
uniformly distributed sequences

In this section many explanations about some classical results
of the quantitative theory of the uniformly distributed sequences are

presented.

15
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2.2 Multidimensional modified integrals of
the functions of the system [',

Following Fine |[Fi 1] for an arbitrary integer & > 0 and a real
z € [0,1) we will again consider the integral of the function pvyx(x),

thus let

BPr(z) = /OgC Bk (t)dt.

To introduce the concept of the multidimensional modified inte-
grals of the functions of the system ['s, we need some preliminary
explanations. Let us denote S = {1,2,...,s}. For an arbitrary inte-
ger 0 <u<slet A, ={ag,...,a,: 1 < a3 <...<a, <s} bean
arbitrary subset of S. Obviously we have C'¥ choices of the subsets A,,.

Let Cs_, = S\ A, and to denote Cs_, = {f1,...,0s-0 : 1 < 1 <
coo < Ps—u < s}

In the case when u=0 we will assume that 4y = 0 and C, = S.

When u = s we have that A, = S and Cy = 0.

Let us assume that v = 0. To the value ©v = 0 corresponds the

s-dimensional vector k = 0. Let us introduce the notion of modified
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integral of the function g, vo(x) as

S

1 S
Bsq)mod,o(x> = H(l —x5) — YR x = (21,...,x5) € [0,1)%.

j=1
Now, let us assume that 1 < u < s. Let k = (ky,...,ks) € Nj

be an arbitrary vector and let us assume that exactly u in number
coordinates of k are different than zero and these are k,,, ..., k,, and
s — u coordinates of k are equal to zero and these are kg,,..., ks, ,.
Let us assume that the vector k satisfies the following condition:

(C) For 1 < j < w the coordinate ko, to present of the form
ko, = k;éj‘j),B;?J') + k&j’

where g; > 0,0 < kj, < Bé?j) — 1 and k:é?j) e{l,... ,bg?j) -1}
Let x = (x1,...,x5) € [0,1)° be an arbitrary vector. For 1 <u <s
and the set C,_, let us denote x*™% = (x4,,..., 75, ,) and define the

function

S—UuU

1—2p,), if 1<u<s—1,
Bj

j=1

Q(x(s_“)) =
1, if u=Ss.

We will introduce the notion of modified integral of rang u of the

function g,k (x) as

) o X
Bs ™ (911000090 (RS o kS0 ) (K vy kau>()
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= (=" ][ 5o, P, () x QxE")

j=1

1

Qs—u’

.A(bg"‘j)- k(o))

i 795

2.3 Preliminary results

In this paragraph, many useful results are proved.

2.4 Applications of the modified integrals
of the functions of the system [z, to
the theory of the uniformly distributed
sequences

2.4.1 The LeVeque’s inequality

Theorem 2.1 (The LeVeque’s inequality)
Let En = {xo, ..., xn_1} be an arbitrary net composed by N points

in [0,1). Then, the extreme discrepancy D(En) of the net En satisfies
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the inequality

oo bg—1 (kg+1)By—1

Diey) <12 > Y

9=0 kg=1 k=kyB,

| Nl
~ Z BPgk, k(70)
Nz

2.4.2 The Koksma’s formula

Theorem 2.2 (The Koksma’s formula) Let £y = {xo,...,Xn_1}
be an arbitrary net composed by N > 1 points in [0,1)°. Then, the

quadratic discrepancy T(En) of the net Ex satisfies the equality

+ZZHZZ Z x

u=1 {ay,...,ay}CS j=1 g;=0 <a]>_1 o __k(aﬂBf,j?‘)

-----

2.4.3 The Erdos-Turan-Koksma’s inequality

Theorem 2.3 (The Erdoés-Turdn-Koksma’s inequality) Let us

assume that the coordinate sequences of the Bs—adic system are



20 CHAPTER 2. THE Bs—ADIC FUNCTIONS AND

bounded from above, i. e., there exists an absolute constant C' such
that for 1 < j < s and each © > 0 the inequality bgj) < C holds. Let

us denote b = min minb, U Let us define the constant

1<5<s 120
Z, it ¢ =2,
K(C;s) = 02\ 512
[H(_) ] i 023
8
Let En = {Xq,...,Xn_1} be an arbitrary net composed by N points

in [0,1)%. Then, for an arbitrary integer M > 1 the inequality holds

T(e) < K(Ci) |1+ - 05 2] gt (NZBS modo<xn>>

(

) (e7)
w M_1bed 1 (k +1)B ~1
> Y 11 >, X
u=1 {ai,...,a,}CS j=1 g;=0 ga Py . —kéj B;;%ﬁ
| V-1 2
—— @ % « X
NZOBS (915590 ) (R 1 k52 (R e kau)( n)
n=

2.4.4 The integral Weyl’s criterion

Theorem 2.4 (The integral Wey!’s criterion) Let £ = (x,,)n>0 be
an arbitrary sequence of points in [0,1)°. The sequence & is uniformly

distributed in [0,1)% if and only if the following conditions hold:
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(i) The limit equality

N-1
. 1
Jm 2 5 Pmodolxe) =0

holds;

(ii) For each choice of the parameters 1 < u < s, {aq,...,a,} C
S, (g1,--,90) € NS, for 1 < j < u ké?j) € {1,...7b§?j) — 1} and
k:é?j).Bé?j) < kg, < (k:é?j) + 1).B§?j) — 1 the limit equality holds

lim —
N1—>H<1>0N

2.5 Concluding remarks
In this section, some remarks of general character for the applica-

tions of the functions of the system I's, to the theory of the uniformly

distributed sequences are developed.



Chapter 3

Multivariate integration in
weighted Sobolev spaces

In this chapter of the thesis, some problems of the Quasi-Monte

Carlo integration in weighted Sobolev spaces are considered.

3.1 General remarks about quasi-Monte
Carlo integration in reproducing ker-
nel Hilbert spaces

Following Aronszajan [Ar 1|, we will remind the notion of a repro-

ducing kernel for a Hilbert space.

Definition 3.1 Let F' be a class of functions defined on E forming

Hilbert space. The function K(x,y) of x,y € E is called a reproducing

22



3.1. GENERAL REMARKS ABOUT QUASI-MONTE CARLO 23

kernel for the space F' if the following properties hold:

1.) For every fized y € E the kernel K(x,y), as a function of x,
belongs to F',

2.) (reproducing property) For every function f € F and every

y € E the equality

fly) =< f(z), K(z,y) >,

holds. Here, the subscript x indicates that the inner product is given

with respect to the variable x.

The inner product < -,- > in the space F' generates a norm || f||,

thus we have that ||f]| = \/< f(z), f(z) >. Usually, the space F is
considered as a set of functions with finite norm, thus F' = {f(x), x €
B [|f]] < +oc}.

The multidimensional Hilbert spaces H, . are defined as a tensor
product of the corresponding one dimensional Hilbert spaces Hi,,,
thus we have that H, , = H,,, ® ... ® H,,.

For 1 < j < s let Ky, (x;,y;), where x;,y; € [0,1), be the re-
producing kernel of the one dimensional Hilbert space H;,,. Then,

the reproducing kernel of the multidimensional Hilbert space Hy, is
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defined as

Ks,'y(xa Y) = H Klﬂj (‘rjv yj)v

j=1

x=(x1,...,25) €[0,1)°, vy = (v1,...,ys) €[0,1)°.

The technique of the numerical integration in reproducing kernel
Hilbert spaces is given as follows: Let H (K) be a Hilbert space gen-
erated by the reproducing kernel K with an inner product < - >y, (),

which engenders the norm || - |

Hy(K)-

We will consider the integral

I,(f) = (x)dx, f € Hs(K).
[0,1]¢

The integral I5(f) is approximated by a Quasi-Monte Carlo algo-

rithm
| V-1
Qs(f; Pn) = N 2 f(xn),
where Py = {X¢,...,Xn_1} is a deterministic sample point net in
[0,1)s.

In the next definition, the main notion of the theory of the Quasi-
Monte Carlo integration in reproducing kernel Hilbert spaces — the

notion of worst-case error of the integration is presented.
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Definition 3.2 The worst-case error of the integration in the space

H (K) by using the net Py of nodes is defined as

e(Hs(K); Py) = sup [1s(f) — Qs(f; Pr)l.
FEH(K), ||flsx)<1

3.2 Some notes about the multivariate in-
tegration in weighted Sobolev spaces

In this paragraph, some general notes about the analytical struc-

ture of the weighted Sobolev spaces are developed.

3.2.1 A mean square worst-case error of the inte-
gration in weighted Sobolev spaces

Let Py = {Xq,...,Xy_1} be an arbitrary net of N points in [0, 1)*.
Let o € [0,1)° be an arbitrary and fixed vector. By using the vector
69[39’51)5 let us define the net Py (o) = {xo 69[125’1)5 O,y XN_1 69[125’1)5 o},
which we will call a digitally Bs—adic shifted net.

The following Definitions are presented:

Definition 3.3 The mean square worst-case error of the integra-
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tion in the space Hs(K) by using the net Py is defined as
e*(H (K); Py) :/ e*(Hy(K); Py(0))do.
[0,1]°

Definition 3.4 For an arbitrary reproducing kernel K we define

the associated digitally Bs—adic shifted kernel as

Kas(x,y) = Kxog"
[0,1])®

o,y &0V 0)do, x,y € [0,1)",

The following theorem is proved:

Theorem 3.1 Let Hy(K) be an arbitrary Hilbert space generated by
the reproducing kernel K. Let Py be an arbitrary net composed by
N points in [0,1)*. Then, the mean square worst-case error of the

integration in the space Hy(K) by using the net Py satisfies the equality
é(HS(K)) PN) = €<H5(de); PN>7

1. e. the mean square worst-case error of the integration in the space
H(K) by using the net Py is equal to the ordinary worst-case error of
the integration in the Hilbert space Hy(K4s) generated by the associated

B,—adic digitally shifted kernel Kqs and by using the same net Py.
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3.3 Some preliminary results

In this paragraph, some preliminary results, which are essentially

used in the next paragraphs of the thesis are present.

3.4 General remarks about reproducing
kernel Sobolev spaces

In this paragraph, many details about structure and the reproduc-
ing kernels of the unanchored and anchored weights Sobolev spaces are

presented.

3.5 Multidimensional integration in the
unanchored weighted Sobolev space

HSob,s,v

In this paragraph, we will consider problems related to the mul-

tidimensional integration in the unanchored weighted Sobolev space

HSob,s,'y-

3.5.1 A construction of the space Hgg s~

Following Sloan and Wozniakowski [SIWo 1|, for an arbitrary vec-
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tor v of positive weights, we will consider the weighted unanchored
Sobolev space Hggp, s~ To present the inner product in the space
Hgop s, we need some notations: For an arbitrary vector x € [0, 1)°
and a subset u C {1,2,...,s} let the symbol x, denote the vector
from [0, 1]/ consisting of the components of x with indexes in u and

x_, — the vector of components of x with indexes not in u. Also we

denote v, = H'yj and dx, = H dx;.
JEU JEU
For two functions f and g, their inner product is defined as

SR [ [ . O fxgax o

uC{1,...,s}

|u
/[01] N gx g(x)dx_u] dx,.

In this way, the norm ||f||s, is given by ||f||s, = V/{f, [)s~- Fi-

nally, the space Hgop s is defined as Hgop sy = {f @ || f]]s,y < +00}.

For an arbitrary real v > 0 the function

Kigloag) =147 |3Balle = o) + Bso)Bi)| vy € 0.0

is introduced and the following Lemma is proved.
Lemma 3.4 The function K, is the reproducing kernel of the

Hilbert space Hgops -
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3.6 A formula for the mean square worst-
case error of the integration in the
space Hggp s~

In the next theorem, we present the formula for the mean square

worst-case error of the integration in the space Hgop,s -

Theorem 3.2 For an arbitrary vector v = (y1,...,7s) of coordinate
weights and a vectork = (ky, ..., ks) € Nj let the coefficient I?Sﬁ(k, k)
be defined in the condition of Lemma 3.5.

Let Py = {Xq,...,Xn_1} be an arbitrary net composed by N points
in [0,1)°.

Then, the mean square worst-case error of the integration in the
space Hgop s~ by using the net Py satisfies the equality

—-1N-1

é2 (HSob,s,'y; PN =-1 + O Z Z KdSS'y Xnaxm)-

n=0 m=0

Also, the equality holds
éQ (HSob,s,'y; PN)

1 - _
e Z K (k. k)5, 7% (Xn) B, 7k (Xim)-
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3.7 A notion of the unanchored weighted
('s,;y)— diaphony

In the next definition, we introduce the concept of the so-called
unanchored weighted (I's,;y)—diaphony.

Definition 3.5 For an arbitrary integer N > 1 the unanchored
weighted (U'g,;v)—diaphony of the first N elements of the sequence

€ = (Xn)n>0 of points in [0,1)° is defined as

ZB 'Vk Xn

where the coefficient p(vy; Bs; k) and the constant C(vy; Bs) are defined

1
Fn(Ts578) = | moim e
N( Bs,f}/y§> C(’)/,Bs) kég\{o} "

respectively by the equalities (3.46) and (3.49).
In the next theorem, we show that the unanchored weighted
(T's,;v)—diaphony is quantitative measure for the irregularity of the

distribution of sequences. So, the following theorem holds:

Theorem 3.3 The sequence £ is uniformly distributed in [0,1)* if and

only if the limit equality
lim Fn(T'p;v;€) =0
N—o00

holds for each choice of the vector v of coordinate weights.
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3.8 A relationship between the mean
square worst-case error and the unan-
chored weighted (I'g,; v)—diaphony

Theorem 3.4 Let Py be an arbitrary net by N points in [0,1)°. Then,
the mean square worst-case error é(Hgop 3 Pn) of the integration in
the space Hgops~ by using the net Py of nodes and the unanchored

weighted F'(I'p.;7y) of this net are related with the equality
é(HSOb,S,"/;PN) = C(’YaBS)F(FBsa’% PN):

where the constant C(v; Bs) is defined by the equality (3.49).

3.9 Multidimensional integration in the
anchored weighted Sobolev space

HSob,s,%W

3.9.1 A construction of the space Hgup s w

In this section, we consider the anchored case of a choice of
the reproducing kernel. Following Hickernell [Hi 2] and Novak and
Wozniakowski [NoWo 1], we briefly will recall the details:

Let w = (w1, ..., ws) € [0,1]° be a fixed vector, which we will call
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"anchor".

To present the inner product in the space Hgops,w, We need some
notations. For an arbitrary subset v C {1,...,s} let |u| denote the
cardinality of the set u. For a vector x € [0, 1)® the symbol x, denotes
the vector from [0,1)/ consisting the components of x with indexes
in u. By using the anchor vector w the notation (x,, w_,) will denote
the vector from [0, 1]® with coordinate x; when j € u and w; when
jed{l,...,s}\ u

Also, we denote v, = [[ ¢, 7> dxu = [];c, dz;.

For two functions f and g their inner product is defined as

([ 9) 5w

\ul |ul
/[ 0 I (xq, W_u)g—xug(xu, W, )dx,.

uC{l 0,1]1v! 8X“

In this way, the norm || f||s,w is given by || f|]s.w = 1/ {f, g>s,7,w'
Finally, the space Hgopsyw is defined as Hgopsow = {f
[ lls.w < +00}-
For arbitrary reals v > 0 and w € [0, 1] we will consider the func-
tion

Kl,%w(flf,y) = 1 +'Y,Uw($,y>, xay G [07 1)7
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where the quantity g, (z,y) is defined as

|z —w| + |y —w| — |z —y]
(2, ) = :

2
For an arbitrary vector of coordinates v = (v1,...,7s) and the
given anchor vector w = (wy,...,w,) the multidimensional function

K w(x,y) is defined as

Ksp/,w (Xa Y) = H Kl,’yj,wj (xj7 yj>a

j=1
x=(x1,...,25) €[0,1)°, vy = (y1,...,ys) €[0,1)°.

The following lemma is proved:

Lemma 3.1 The function K, is the reproducing kernel of the

Hilbert space Hgop sy w-

3.10 A formula for the mean square worst-
case error of the integration in the
sSpace HSOb,s,%w

In the next theorem, we present the formula for the mean square

worst-case error of the integration in the space Hgop, s w-
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Theorem 3.5 For an arbitrary vector v = (y1,...,7s) of coordinate
weights, a given anchor vector w = (wy, ..., wy) € [0,1]° and an ar-
bitrary vector k € N§ let the coefficient I?s,%w(k, k) be defined in the
condition of Lemma 3.7.

Let Py = {Xo,...,Xn_1} be an arbitrary net composed by N points
in [0,1)°.

Then, the mean square worst-case error of the integration in the
space Hgop 5w, by using the net Py, satisfies the equality

~ 5 1

Jj=1

N—-1N-1

+% Z Z deys,%W(Xn, Xim)-

n=0 m=0

Also, the equality holds

é2 (HSob,s,’y,w; PN)

N—-1N-1

_ % SN S Rk K5, (%) 5.7 (%0m)-

n=0 m=0 keN§\{0}

3.11 A notion of the anchored weighted
(I's,;7; w)— diaphony

In this paragraph, we introduce the notion of an anchored weighted
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(I's,; v; w)—diaphony.
Definition 3.6 For an arbitrary integer N > 1 the anchored
weighted (I'p,; ~v; w)—diaphony of the first N elements of the sequence

€ = (Xn)n>0 of points in [0,1)® is defined as

Fn(Tp; v w;€)

2\ 3
1
= —C(V' B E p(v; w; Bg; k)

1 N-1
N Z B,k (Xn)
keNg\{0} n=0

where the coefficient p(y; w; Bs; k) and the constant C(y;w;Bs) are
defined respectively by the equalities (3.71) and (3.72).

In the next theorem, we show that the anchored weighted
(I's,;7v; w)—diaphony is a quantitative measure for the irregularity

of the distribution of sequences. The following theorem holds:

Theorem 3.6 The sequence £ is uniformly distributed in [0,1)° if and

only if the limit equality
lim Fy(I'g;v;w;€) =0
N—00

holds for each choice of the vector v of coordinate weights and the

anchor vector w.
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3.12 A relationship between the mean
square worst-case error and the an-
chored weighted (I'g,;v; w)—diaphony

In this paragraph of the thesis, we show the relationship that
exists between the mean square worst-case error of the integration in
the space Hgops,v,w and the anchored weighted (I's,;y; w)—diaphony

of the net of the nodes of the integration.

Theorem 3.7 Let Py be an arbitrary net of N points in [0,1)°. Then,
the mean square worst-case error €(Hgop s vw: Pn) of the integration in
the space Hgop 5w, by using the net Py of nodes, and the anchored
weighted diaphony F(I',;~y; w; Py) of this net are related to the equal-
1ty

E(Hsobsywi Pv) = V/C(7; W Bo).F(T',;7; w; Py),

where the constant C(v; w; Bs) is defined by the equality (3.72).
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Contributions of the author

According to the presented in the thesis results, the author has the

claim to following contributions:

1. Define of the notion of multidimensional modified integrals of
the functions of the system I'z, and prove some of their properties.
Some classical results of the quantitative theory of the uniformly dis-
tributed sequences, as the LeVeque’s inequality, the Koksma’s formula
and the Erdos-Turan-Koksma inequality are presented in the terms of

the introduced modified integrals;

2. The integral Weyl’s criterion that a sequence to be uniformly

distributed is presented in the terms of these integrals;

3. A definition of the notion of mean square worst-case error of
the integration in Hilbert spaces, which is based on the arithmetic
related to the function system I'g, is introduced. The presentation of
this mean square worst-case error as an ordinary worst-case error of
the integration in Hilbert spaces, generated by the associated digitally

B,—adic shifted kernel is proved;

4. Two types of Sobolev spaces — the unanchored weighted Sobolev

space Hgop s, and the anchored weighted Sobolev space Hgop 5w are
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considered. In the both cases of spaces, the formulas in explicit form
for the mean square worst-case error of the integration in these spaces
are proved.

5. The notions of the unanchored and anchored weighted diaphony
are introduced and it is proved that these types of the diaphony are
quantitative measures for the irregularity of the distribution of se-
quences in [0, 1)".

6. The relationships that exist between the mean square worst-
case errors of the integration in the spaces Hgop s and Hgop 5w and
the corresponding types of the diaphony - the unanchored weighted
diaphony (I's,;~y)—diaphony and the anchored weighted diaphony
(I'g,;v; w)—diaphony are proved. In this way, the nature of the intro-
duced types of the diaphony is explained — they are the mean square

worst-case errors of the integration in appropriate Sobolev spaces.
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A list of the publications of the author

connected with the thesis

1. V. Grozdanov and E. Shabani, Multidimensional quasi-Monte
Carlo integration in weighted anchored Sobolev spaces, Comp. Rendus
Akad. Bulgare Sci. 77 (12) (2024), 1743-1751.

2. V. Grozdanov and E. Shabani, Some applications of the func-
tions of the system I'g, to the theory of the uniformly distributed se-
quences, Annual of Sofia University "St. Kliment Ohridsi", Faculty of

Mathematics and Informatics, (2025)



References

[Ar 1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer.
Math. Soc. 68 (1950), 337-404.

[Fi1] N. J. Fine, On the Walsh functions, J. Trans. Amer. Math.
Soc. 65 (1949) 372-414.

|GrSh 1] V. Grozdanov, E. Shabani, Some applications of the
functions of the system I'g, to the theory of the uniformly distributed
sequences, submit to Annual of the Sophia university St. Climent
Ohridski.

[GrSh 2| V. Grozdanov, E. Shabani, Multidimensional Quasi-
Monte Carlo integration in weighted anchored Sobolev spaces, accepted

for publication in Comp. Rendus Akad. Bulgare Sci.

[NoWo 1] Novak, H. Wozniakovsi,

40



3.12. A RELATIONSHIP BETWEEN THE MEAN SQUARE 41

[Pe 1] Ts. N. Petrova, Quasi-Monte Carlo integration in hy-
brid Korobov and Sobolev spaces, dissertation, South West University
"Neofit Rilsi", Blagoevgrad, Bulgaria, 2021.

[SIWo 1] 1. Sloan, H. Wozniakovsi, Tractability of multivariate
integration for weighted Korobov classes, J. Complexity 17 (2001),
697-721 doi: 10.1006/jcom.2001.0599.



