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Preface

The uniformly distributed sequences have numerous applications

in many branches of science as numerical methods, physics, financial

mathematics, cryptography and others. This drives the significant

scientific interest in these mathematical objects.

The thesis is organized as Preface, three chapters and References.

The first chapter has an auxiliary character. Here the definitions

and properties of some classes of complete orthonormal function sys-

tems are presented. All considered function systems are constructed

using Cantor number system. The definitions of the Vilenkin func-

tions, the Haar functions and the Bs−adic functions constructed in

Cantor system are also reviewed. Additionally, here some elements

of the theory of the uniformly distributed sequences are presented.

Some quantitative measures for the irregularity of the distribution of
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sequences are also considered.

In the second chapter some applications of the functions of the

system ΓBs to the theory of uniformly distributed sequences are shown.

The notion of multidimensional modified integrals of the functions of

the system ΓBs is introduced. Some classical results of the theory

of the uniformly distributed sequences are presented in terms of the

introduced modified integrals.

The third chapter considers some applications of the functions of

the system ΓBs to the quasi-Monte Carlo integration in reproducing

kernel Sobolev space. The notion of the mean square wort-case error

of the integration, which is based on the arithmetic related with the

functions of the system ΓBs , is introduced. Some details related to

this notion are presented. Two types of reproducing kernel weighted

Sobolev spaces - unanchored and anchored are considered. The exact

formulas for the mean square wort-case error of the integration in

these spaces are proved. The notions of the weighted unanchored and

the weighted anchored diaphony are introduced. The mean square

wort-case errors of the integration in considered spaces are presented

in terms of the corresponding versions of the diaphony.



Chapter 1

Some preliminary notations
and statements

In this chapter of the thesis, we present the definitions and their

main properties of the functions of some classes of complete orthonor-

mal function systems constructed in Cantor systems.

Let s ≥ 1 be a fixed integer, which will denote the dimension

through the thesis.

1.1 Some notes about the Cantor number
systems

The so-called Cantor systems are quite natural generalizations of

the ordinary b−adic number system. The main components of the

6



1.1. SOME NOTES ABOUT THE CANTOR NUMBER SYSTEMS7

b−adic number system are the base b ≥ 2, which is a fixed integer, the

set {0, 1, . . . , b− 1} of the b−adic digits and the consecutive powers of

b, thus the set {1 = b0, b, b2, . . .}.

We can consider the Cantor systems as systems with variable bases.

Thus, to the base b corresponds a sequence of bases

B = {b0, b1, . . . : bi ≥ 2 for i ≥ 0}.

To the successive degrees of the base b corresponds the so-called gener-

alized powers. Thus, we have the following correspondences: to b0 = 1

corresponds B0 = 1; to b1 = b corresponds B1 = b0; to b2 = b.b

corresponds B2 = b1.b2 and so one. In this way, to the sequence B

corresponds the sequence {B0, B1, B2, . . .} of the so-called generalized

powers, defined in the following recursive manner:

B0 = 1 and for i ≥ 0 Bi+1 = Bi.bi.

For the Cantor system with the above components we will use the

notion B−adic number system.

An arbitrary integer number k ≥ 0 has the unique B−adic repre-

sentation of the form

k =
ν∑

i=0

kiBi,
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where for 0 ≤ i ≤ ν we have that ki ∈ {0, 1, . . . , bi − 1} and kν ̸= 0.

An arbitrary real number x ∈ [0, 1) has the B−adic representation

of the form

x =
∞∑
i=0

xi

Bi+1

,

where for i ≥ 0 we have that xi ∈ {0, 1, . . . , bi − 1}. In the additional

assumption, that for infinitely many indexes i xi ̸= bi − 1 the above

representation is also unique.

We will call that the above expressions are the B−adic represen-

tations of the integer k and the real x.

Now, we will give the concepts of the multidimensional Cantor

systems. For this purpose, for 1 ≤ j ≤ s let

Bj = {b(j)0 , b
(j)
1 , . . . : b

(j)
i ≥ 2 for i ≥ 0}

be given sequences of bases and to denote Bs = (B1, . . . , Bs).

In every concrete case, we will use the multidimensional Cantor

systems Bs to construct the corresponding function system.

1.2 Some classes of complete orthonormal
function systems

In this paragraph, the constructions and the properties of some
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classes of complete orthonormal function systems are presented.

1.3 The function system ΓBs

1.3.1 Definition and properties of the functions of
the system ΓBs

In 2021 Petrova [Pe 1] proposed the concept of a new function

system constructed in Bs−adic Cantor system, which is a naturale

generalization of the system Γb.

Definition 1.8 For an arbitrary integer k ≥ 0 and a real number

x ∈ [0, 1) with the B-adic representations

k =
ν∑

i=0

kiBi and x =
∞∑
i=0

xi

Bi+1

,

where for i ≥ 0 ki, xi ∈ {0, 1, . . . , bi − 1}, kν ̸= 0 and for infinitely

many i we have xi ̸= bi − 1, the k-th function
B
γk : [0, 1) → C is

defined as

B
γk(x) = e

2πi
(

k0
B1

+
k1
B2

+...+ kν
Bν+1

)
(x0B0+x1B1+...+xνBν)

.

The set ΓB = {
B
γk(x) : k ∈ N0, x ∈ [0, 1)} is called B−adic

function system.
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Let the set Bs = (B1, . . . , Bs) be as above. We will present the

concept of the multidimensional Bs−adic functions.

Definition 1.9 For an arbitrary vector k = (k1, . . . , ks) ∈ Ns
0 the

k−th function Bs
γk : [0, 1)s → C is defined as

Bs
γk(x) =

s∏
j=1

Bj
γkj(xj), x = (x1, . . . , xs) ∈ [0, 1)s.

The set ΓBs = {Bs
γk(x) : k ∈ Ns

0, x ∈ [0, 1)s} is called Bs−adic

function system.

1.4 Uniformly distributed sequences

The object of the scientific discipline called a theory of the uni-

formly distributed sequences is the investigation of the distribution of

the partial parts of the real numbers in the unit interval [0, 1). The an-

cestor of this discipline is the German mathematician Herman Weyl.

In his important paper of 1916 "Über die Gleichverteilung von Zahlen

mod Eins" he contemplated an attempt to specify the approximation

theorem of Kronecker and the future development of the theory of the

Diophantine approximations.
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1.4.1 Definition of the notion uniformly dis-
tributed sequence

Let a = (a1, . . . , as) and b = (b1, . . . , bs) be two vectors with real

coordinates, i. e. a,b ∈ Rs. We will call that a < b if for each

1 ≤ j ≤ s the inequalities aj < bj hold. The set of points x ∈ Rs such

that a ≤ x < b we will denote by [a,b).

For an arbitrary vector x = (x1, . . . , xs) ∈ R its integer part

will be [x] = ([x1], . . . , [xs]) and the fractional part of x is {x} =

({x1}, . . . , {xs}).

Let ξ = (xn)n≥0 be an arbitrary sequence of vectors in Rs. Let

J =
s∏

j=1

[aj, bj), where for 1 ≤ j ≤ s 0 ≤ aj < bj ≤ 1, be an arbitrary

subinterval of [0, 1)s with a volume µ(J) =
s∏

j=1

(bj−aj). For an arbitrary

positive integer number N let as above

A(J ;N ; ξ) = #{xn : 0 ≤ n ≤ N − 1, {xn} ∈ J}.

In the following definition the concept of uniformly distributed

sequence is presented:

Definition 1.11 The sequence ξ = (xn)n≥0 of vectors is called
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uniformly distributed modulus 1 in Rs if the limit equality

lim
N→∞

A(J ;N ; ξ)

N
= µ(J)

holds for each subinterval J of [0, 1)s.

1.4.2 Integral Weyl’s criterion

In this section the main important result of the theory of the uni-

formly distributed sequences is the so-called integral Weyl’s criterion

is exposed.

1.4.3 Exponential Weyl’s criterion

In this section the so-called exponential Weyl’s criterion, is pre-

sented.

1.4.4 Some quantitative characteristics for the ir-
regularity of the distributions of sequences

In Definitions 1.11 the concept of uniformly distributed sequence

was presented. In fact, this definition presents the idea for the ideal

uniform distribution. But in the analytical nature of the construc-

tion of each sequence an insurmountable irregularity is staked. In
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this sense, each sequence has own concrete distribution, which distin-

guishes from the ideal uniform distribution.

In the theory of the uniformly distributed sequences, the degree of

deviation of the distribution of a concrete sequence from the ideal dis-

tribution is measured with special quantitative measures. In practice,

they give quantitative estimation of inevitable quality called irregu-

larity of the distribution. In general, these quantitative measures are

different types of the discrepancy and the diaphony.

Let ξ = (xn)n≥0 be an arbitrary sequence of points in Rs. For an

arbitrary subinterval J of [0, 1)s and each integer N ≥ 1 the quantity

R(J ;N ; ξ) =
A(J ;N ; ξ)

N
− µs(J),

where µs(J) is the Lebesgue measure of the interval J, is called local

discrepancy of the sequence ξ. By taking different norms of the local

discrepancy, for example the Lp−norm, 1 ≤ p < ∞, the L∞−norm,

we obtain different kinds of the discrepancy.

Let J and J ∗ denote the sets of subintervals of [0, 1)s respectively

of the form J =
s∏

j=1

[uj, vj) and J∗ =
s∏

j=1

[0, vj), where for 1 ≤ j ≤ s

0 ≤ uj < vj ≤ 1. For an arbitrary vector x = (x1, . . . , xs) ∈ [0, 1)s

let us denote [0,x) = [0, x1)× . . .× [0, xs). We will give the following
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definitions:

Definition 1.12 For each integer number N ≥ 1 the extreme dis-

crepancy DN(ξ), the star-discrepancy D∗
N(ξ) and the quadratic dis-

crepancy TN(ξ) of the first N elements of the sequence ξ are defined

respectively as

DN(ξ) = sup
J∈J

∣∣∣∣A(J ;N ; ξ)

N
− µs(J)

∣∣∣∣ ,
D∗

N(ξ) = sup
J∗∈J ∗

∣∣∣∣A(J∗;N ; ξ)

N
− µs(J

∗)

∣∣∣∣
and

TN(ξ) =

(∫
[0,1]s

∣∣∣∣A([0,x);N ; ξ)

N
− x1 . . . xs

∣∣∣∣2 dx1 . . . dxs

) 1
2

.

Well known is the following result:

Theorem 1.1 The sequence ξ is uniformly distributed modulus 1 in

Rs if and only if one of the following equivalent limit equalities hold

lim
N→∞

DN(ξ) = 0, lim
N→∞

D∗
N(ξ) = 0 и lim

N→∞
TN(ξ) = 0.



Chapter 2

The Bs−adic functions and
uniform distribution of
sequences

2.1 Notices connected with some classical
quantitative results of the theory of the
uniformly distributed sequences

In this section many explanations about some classical results

of the quantitative theory of the uniformly distributed sequences are

presented.

15
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2.2 Multidimensional modified integrals of
the functions of the system ΓBs

Following Fine [Fi 1] for an arbitrary integer k ≥ 0 and a real

x ∈ [0, 1) we will again consider the integral of the function Bγk(x),

thus let

BΦk(x) =

∫ x

0
Bγk(t)dt.

To introduce the concept of the multidimensional modified inte-

grals of the functions of the system ΓBs we need some preliminary

explanations. Let us denote S = {1, 2, . . . , s}. For an arbitrary inte-

ger 0 ≤ u ≤ s let Au = {α1, . . . , αu : 1 ≤ α1 < . . . < αu ≤ s} be an

arbitrary subset of S. Obviously we have Cu
s choices of the subsets Au.

Let Cs−u = S \ Au and to denote Cs−u = {β1, . . . , βs−u : 1 ≤ β1 <

. . . < βs−u ≤ s}.

In the case when u=0 we will assume that A0 = ∅ and Cs = S.

When u = s we have that As = S and C0 = ∅.

Let us assume that u = 0. To the value u = 0 corresponds the

s-dimensional vector k = 0. Let us introduce the notion of modified
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integral of the function Bsγ0(x) as

BsΦmod,0
(x) =

s∏
j=1

(1− xj)−
1

2s
, x = (x1, . . . , xs) ∈ [0, 1)s.

Now, let us assume that 1 ≤ u ≤ s. Let k = (k1, . . . , ks) ∈ Ns
0

be an arbitrary vector and let us assume that exactly u in number

coordinates of k are different than zero and these are kα1 , . . . , kαu and

s − u coordinates of k are equal to zero and these are kβ1 , . . . , kβs−u .

Let us assume that the vector k satisfies the following condition:

(C) For 1 ≤ j ≤ u the coordinate kαj
to present of the form

kαj
= k(αj)

gj
.B(αj)

gj
+ k′

αj
,

where gj ≥ 0, 0 ≤ k′
αj

≤ B
(αj)
gj − 1 and k

(αj)
gj ∈ {1, . . . , b(αj)

gj − 1}.

Let x = (x1, . . . , xs) ∈ [0, 1)s be an arbitrary vector. For 1 ≤ u ≤ s

and the set Cs−u let us denote x(s−u) = (xβ1 , . . . , xβs−u) and define the

function

Ω(x(s−u)) =


s−u∏
j=1

(1− xβj
), if 1 ≤ u ≤ s− 1,

1, if u = s.

We will introduce the notion of modified integral of rang u of the

function Bsγk(x) as

BsΦ(g1,...,gu),(k
(α1)
g1

,...,k
(αu)
gu ),(kα1 ,...,kαu )

(x)
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= (−1)u
u∏

j=1

Bαj
Φkαj

(xαj
)× Ω(x(s−u))

−
u∏

j=1

 1[
B

(αj)
gj+1

]2 . e
2πi

k
(αj)
gj

b
(αj)
gj − 1

e
2πi

 k
(αj)

0

b
(αj)

0

+...+
k
(αj)
gj

b
(αj)

0 ...b
(αj)
gj


− 1

.∆(b(αj)
gj

; k(αj)
gj

)

 1

2s−u
,

x = (x1, . . . , xs) ∈ [0, 1)s.

2.3 Preliminary results

In this paragraph, many useful results are proved.

2.4 Applications of the modified integrals
of the functions of the system ΓBs to
the theory of the uniformly distributed
sequences

2.4.1 The LeVeque’s inequality

Theorem 2.1 (The LeVeque’s inequality)

Let ξN = {x0, . . . , xN−1} be an arbitrary net composed by N points

in [0, 1). Then, the extreme discrepancy D(ξN) of the net ξN satisfies
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the inequality

D3(ξN) ≤ 12
∞∑
g=0

bg−1∑
kg=1

(kg+1)Bg−1∑
k=kgBg

∣∣∣∣∣ 1N
N−1∑
k=0

BΦg,kg ,k(xn)

∣∣∣∣∣
2

.

2.4.2 The Koksma’s formula

Theorem 2.2 (The Koksma’s formula) Let ξN = {x0, . . . ,xN−1}

be an arbitrary net composed by N ≥ 1 points in [0, 1)s. Then, the

quadratic discrepancy T (ξN) of the net ξN satisfies the equality

T 2(ξN) =

∣∣∣∣∣ 1N
N−1∑
n=0

BsΦmod,0
(xn)

∣∣∣∣∣
2

+
s∑

u=1

∑
{α1,...,αu}⊆S

u∏
j=1

∞∑
gj=0

b
(αj)
gj

−1∑
k
(αj)
gj

=1

(k
(αj)
gj

+1).B
(αj)
gj

−1∑
kαj=k

(αj)
gj

.B
(αj)
gj

×

∣∣∣∣∣ 1N
N−1∑
n=0

BsΦ(g1,...,gu),(k
(α1)
g1

,...,k
(αu)
gu ),(kα1 ,...,kαu )

(xn)

∣∣∣∣∣
2

.

2.4.3 The Erdös-Turán-Koksma’s inequality

Theorem 2.3 (The Erdös-Turán-Koksma’s inequality) Let us

assume that the coordinate sequences of the Bs−adic system are
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bounded from above, i. e., there exists an absolute constant C such

that for 1 ≤ j ≤ s and each i ≥ 0 the inequality b
(j)
i ≤ C holds. Let

us denote b = min
1≤j≤s

min
i≥0

b
(j)
i . Let us define the constant

K(C; s) =


9

4
, if C = 2,[
1 +

(
C2

8

)s]2
, if C ≥ 3.

Let ξN = {x0, . . . ,xN−1} be an arbitrary net composed by N points

in [0, 1)s. Then, for an arbitrary integer M > 1 the inequality holds

T 2(ξN) ≤ K(C; s)

[
1 + (C − 1)

b

b− 1

]s
.
1

bM
+

(
1

N

N−1∑
n=0

BsΦmod,0
(xn)

)2

+
s∑

u=1

∑
{α1,...,αu}⊆S

u∏
j=1

M−1∑
gj=0

b
(αj)
gj

−1∑
k
(αj)
gj

=1

(k
(αj)
gj

+1).B
(αj)
gj

−1∑
kαj=k

(αj)
gj

.B
(αj)
gj

×

∣∣∣∣∣ 1N
N−1∑
n=0

BsΦ(g1,...,gu),(k
(α1)
g1

,...,k
(αu)
gu ),(kα1 ,...,kαu )

(xn)

∣∣∣∣∣
2

.

2.4.4 The integral Weyl’s criterion

Theorem 2.4 (The integral Weyl’s criterion) Let ξ = (xn)n≥0 be

an arbitrary sequence of points in [0, 1)s. The sequence ξ is uniformly

distributed in [0, 1)s if and only if the following conditions hold:
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(i) The limit equality

lim
N→∞

1

N

N−1∑
n=0

BsΦmod,0
(xn) = 0

holds;

(ii) For each choice of the parameters 1 ≤ u ≤ s, {α1, . . . , αu} ⊆

S, (g1, . . . , gu) ∈ Ns
0, for 1 ≤ j ≤ u k

(αj)
gj ∈ {1, . . . , b(αj)

gj − 1} and

k
(αj)
gj .B

(αj)
gj ≤ kαj

≤ (k
(αj)
gj + 1).B

(αj)
gj − 1 the limit equality holds

lim
N→∞

1

N

N−1∑
n=0

BsΦ(g1,...,gu),(k
(α1)
g1

,...,k
(αu)
gu ),(kα1 ,...,kαu )

(xn) = 0.

2.5 Concluding remarks

In this section, some remarks of general character for the applica-

tions of the functions of the system ΓBs to the theory of the uniformly

distributed sequences are developed.



Chapter 3

Multivariate integration in
weighted Sobolev spaces

In this chapter of the thesis, some problems of the Quasi-Monte

Carlo integration in weighted Sobolev spaces are considered.

3.1 General remarks about quasi-Monte
Carlo integration in reproducing ker-
nel Hilbert spaces

Following Aronszajan [Ar 1], we will remind the notion of a repro-

ducing kernel for a Hilbert space.

Definition 3.1 Let F be a class of functions defined on E forming

Hilbert space. The function K(x, y) of x, y ∈ E is called a reproducing

22



3.1. GENERAL REMARKS ABOUT QUASI-MONTE CARLO 23

kernel for the space F if the following properties hold:

1.) For every fixed y ∈ E the kernel K(x, y), as a function of x,

belongs to F ;

2.) (reproducing property) For every function f ∈ F and every

y ∈ E the equality

f(y) =< f(x), K(x, y) >x

holds. Here, the subscript x indicates that the inner product is given

with respect to the variable x.

The inner product < ·, · > in the space F generates a norm ||f ||,

thus we have that ||f || =
√
< f(x), f(x) >. Usually, the space F is

considered as a set of functions with finite norm, thus F = {f(x), x ∈

E : ||f || < +∞}.

The multidimensional Hilbert spaces Hs,γ are defined as a tensor

product of the corresponding one dimensional Hilbert spaces H1,γj ,

thus we have that Hs,γ = H1,γ1 ⊗ . . .⊗H1,γs .

For 1 ≤ j ≤ s let K1,γj(xj, yj), where xj, yj ∈ [0, 1), be the re-

producing kernel of the one dimensional Hilbert space H1,γj . Then,

the reproducing kernel of the multidimensional Hilbert space Hs,γ is
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defined as

Ks,γ(x,y) =
s∏

j=1

K1,γj(xj, yj),

x = (x1, . . . , xs) ∈ [0, 1)s, y = (y1, . . . , ys) ∈ [0, 1)s.

The technique of the numerical integration in reproducing kernel

Hilbert spaces is given as follows: Let Hs(K) be a Hilbert space gen-

erated by the reproducing kernel K with an inner product < · >Hs(K),

which engenders the norm || · ||Hs(K).

We will consider the integral

Is(f) =

∫
[0,1]s

f(x)dx, f ∈ Hs(K).

The integral Is(f) is approximated by a Quasi-Monte Carlo algo-

rithm

Qs(f ;PN) =
1

N

N−1∑
n=0

f(xn),

where PN = {x0, . . . ,xN−1} is a deterministic sample point net in

[0, 1)s.

In the next definition, the main notion of the theory of the Quasi-

Monte Carlo integration in reproducing kernel Hilbert spaces − the

notion of worst-case error of the integration is presented.
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Definition 3.2 The worst-case error of the integration in the space

Hs(K) by using the net PN of nodes is defined as

e(Hs(K);PN) = sup
f∈Hs(K), ||f ||Hs(K)≤1

|Is(f)−Qs(f ;PN)|.

3.2 Some notes about the multivariate in-
tegration in weighted Sobolev spaces

In this paragraph, some general notes about the analytical struc-

ture of the weighted Sobolev spaces are developed.

3.2.1 A mean square worst-case error of the inte-
gration in weighted Sobolev spaces

Let PN = {x0, . . . ,xN−1} be an arbitrary net of N points in [0, 1)s.

Let σ ∈ [0, 1)s be an arbitrary and fixed vector. By using the vector

⊕[0,1)s

Bs
let us define the net PN(σ) = {x0 ⊕[0,1)s

Bs
σ, . . . ,xN−1 ⊕[0,1)s

Bs
σ},

which we will call a digitally Bs−adic shifted net.

The following Definitions are presented:

Definition 3.3 The mean square worst-case error of the integra-
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tion in the space Hs(K) by using the net PN is defined as

ẽ2(Hs(K);PN) =

∫
[0,1]s

e2(Hs(K);PN(σ))dσ.

Definition 3.4 For an arbitrary reproducing kernel K we define

the associated digitally Bs−adic shifted kernel as

Kds(x,y) =

∫
[0,1]s

K(x⊕[0,1)s

Bs
σ,y ⊕[0,1)s

Bs
σ)dσ, x,y ∈ [0, 1)s.

The following theorem is proved:

Theorem 3.1 Let Hs(K) be an arbitrary Hilbert space generated by

the reproducing kernel K. Let PN be an arbitrary net composed by

N points in [0, 1)s. Then, the mean square worst-case error of the

integration in the space Hs(K) by using the net PN satisfies the equality

ẽ(Hs(K);PN) = e(Hs(Kds);PN),

i. e. the mean square worst-case error of the integration in the space

Hs(K) by using the net PN is equal to the ordinary worst-case error of

the integration in the Hilbert space Hs(Kds) generated by the associated

Bs−adic digitally shifted kernel Kds and by using the same net PN .
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3.3 Some preliminary results

In this paragraph, some preliminary results, which are essentially

used in the next paragraphs of the thesis are present.

3.4 General remarks about reproducing
kernel Sobolev spaces

In this paragraph, many details about structure and the reproduc-

ing kernels of the unanchored and anchored weights Sobolev spaces are

presented.

3.5 Multidimensional integration in the
unanchored weighted Sobolev space
HSob,s,γ

In this paragraph, we will consider problems related to the mul-

tidimensional integration in the unanchored weighted Sobolev space

HSob,s,γ.

3.5.1 A construction of the space HSob,s,γ

Following Sloan and Woźniakowski [SlWo 1], for an arbitrary vec-
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tor γ of positive weights, we will consider the weighted unanchored

Sobolev space HSob,s,γ. To present the inner product in the space

HSob,s,γ, we need some notations: For an arbitrary vector x ∈ [0, 1)s

and a subset u ⊆ {1, 2, . . . , s} let the symbol xu denote the vector

from [0, 1]|u| consisting of the components of x with indexes in u and

x−u − the vector of components of x with indexes not in u. Also we

denote γu =
∏
j∈u

γj and dxu =
∏
j∈u

dxj.

For two functions f and g, their inner product is defined as

⟨f, g⟩s,γ =
∑

u⊆{1,...,s}

γ−1
u

∫
[0,1]|u|

[∫
[0,1]s−|u|

∂|u|

∂xu

f(x)dx−u×

∫
[0,1]s−|u|

∂|u|

∂xu

g(x)dx−u

]
dxu.

In this way, the norm ||f ||s,γ is given by ||f ||s,γ =
√

⟨f, f⟩s,γ. Fi-

nally, the space HSob,s,γ is defined as HSob,s,γ = {f : ||f ||s,γ < +∞}.

For an arbitrary real γ > 0 the function

K1,γ(x, y) = 1 + γ

[
1

2
B2(|x− y|) +B1(x)B1(y)

]
, x, y ∈ [0, 1).

is introduced and the following Lemma is proved.

Lemma 3.4 The function Ks,γ is the reproducing kernel of the

Hilbert space HSob,s,γ.
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3.6 A formula for the mean square worst-
case error of the integration in the
space HSob,s,γ

In the next theorem, we present the formula for the mean square

worst-case error of the integration in the space HSob,s,γ.

Theorem 3.2 For an arbitrary vector γ = (γ1, . . . , γs) of coordinate

weights and a vector k = (k1, . . . , ks) ∈ Ns
0 let the coefficient K̂s,γ(k,k)

be defined in the condition of Lemma 3.5.

Let PN = {x0, . . . ,xN−1} be an arbitrary net composed by N points

in [0, 1)s.

Then, the mean square worst-case error of the integration in the

space HSob,s,γ by using the net PN satisfies the equality

ẽ2 (HSob,s,γ;PN) = −1 +
1

N2

N−1∑
n=0

N−1∑
m=0

Kds,s,γ(xn,xm).

Also, the equality holds

ẽ2 (HSob,s,γ;PN)

=
1

N2

N−1∑
n=0

N−1∑
m=0

∑
k∈Ns

0\{0}

K̂s,γ(k,k)Bsγk(xn)Bsγk(xm).
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3.7 A notion of the unanchored weighted
(ΓBs; γ)− diaphony

In the next definition, we introduce the concept of the so-called

unanchored weighted (ΓBs ; γ)−diaphony.

Definition 3.5 For an arbitrary integer N ≥ 1 the unanchored

weighted (ΓBs ; γ)−diaphony of the first N elements of the sequence

ξ = (xn)n≥0 of points in [0, 1)s is defined as

FN(ΓBs ; γ; ξ) =

 1

C(γ;Bs)

∑
k∈Ns

0\{0}

ρ(γ;Bs;k)

∣∣∣∣∣ 1N
N−1∑
n=0

Bsγk(xn)

∣∣∣∣∣
2
 1

2

,

where the coefficient ρ(γ;Bs;k) and the constant C(γ;Bs) are defined

respectively by the equalities (3.46) and (3.49).

In the next theorem, we show that the unanchored weighted

(ΓBs ; γ)−diaphony is quantitative measure for the irregularity of the

distribution of sequences. So, the following theorem holds:

Theorem 3.3 The sequence ξ is uniformly distributed in [0, 1)s if and

only if the limit equality

lim
N→∞

FN(ΓBs ; γ; ξ) = 0

holds for each choice of the vector γ of coordinate weights.
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3.8 A relationship between the mean
square worst-case error and the unan-
chored weighted (ΓBs; γ)−diaphony

Theorem 3.4 Let PN be an arbitrary net by N points in [0, 1)s. Then,

the mean square worst-case error ẽ(HSob,s,γ;PN) of the integration in

the space HSob,s,γ by using the net PN of nodes and the unanchored

weighted F (ΓBs ; γ) of this net are related with the equality

ẽ(HSob,s,γ;PN) =
√

C(γ;Bs).F (ΓBs ; γ;PN),

where the constant C(γ;Bs) is defined by the equality (3.49).

3.9 Multidimensional integration in the
anchored weighted Sobolev space
HSob,s,γ,w

3.9.1 A construction of the space HSob,s,γ,w

In this section, we consider the anchored case of a choice of

the reproducing kernel. Following Hickernell [Hi 2] and Novak and

Woźniakowski [NoWo 1], we briefly will recall the details:

Let w = (w1, . . . , ws) ∈ [0, 1]s be a fixed vector, which we will call
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"anchor".

To present the inner product in the space HSob,s,γ,w, we need some

notations. For an arbitrary subset u ⊆ {1, . . . , s} let |u| denote the

cardinality of the set u. For a vector x ∈ [0, 1)s the symbol xu denotes

the vector from [0, 1)|u| consisting the components of x with indexes

in u. By using the anchor vector w the notation (xu,w−u) will denote

the vector from [0, 1]s with coordinate xj when j ∈ u and wj when

j ∈ {1, . . . , s} \ u.

Also, we denote γu =
∏

j∈u γj, dxu =
∏

j∈u dxj.

For two functions f and g their inner product is defined as

⟨f, g⟩s,γ,w

=
∑

u⊆{1,...,s}

γ−1
u

∫
[0,1]|u|

∂|u|

∂xu

f(xu,w−u)
∂|u|

∂xu

g(xu,w−u)dxu.

In this way, the norm ||f ||s,γ,w is given by ||f ||s,γ,w =
√

⟨f, g⟩s,γ,w.

Finally, the space HSob,s,γ,w is defined as HSob,s,γ,w = {f :

||f ||s,γ,w < +∞}.

For arbitrary reals γ > 0 and w ∈ [0, 1] we will consider the func-

tion

K1,γ,w(x, y) = 1 + γ.µw(x, y), x, y ∈ [0, 1),
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where the quantity µw(x, y) is defined as

µw(x, y) =
|x− w|+ |y − w| − |x− y|

2
.

For an arbitrary vector of coordinates γ = (γ1, . . . , γs) and the

given anchor vector w = (w1, . . . , ws) the multidimensional function

Ks,γ,w(x,y) is defined as

Ks,γ,w(x,y) =
s∏

j=1

K1,γj ,wj
(xj, yj),

x = (x1, . . . , xs) ∈ [0, 1)s, y = (y1, . . . , ys) ∈ [0, 1)s.

The following lemma is proved:

Lemma 3.1 The function Ks,γ,w is the reproducing kernel of the

Hilbert space HSob,s,γ,w.

3.10 A formula for the mean square worst-
case error of the integration in the
space HSob,s,γ,w

In the next theorem, we present the formula for the mean square

worst-case error of the integration in the space HSob,s,γ,w.
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Theorem 3.5 For an arbitrary vector γ = (γ1, . . . , γs) of coordinate

weights, a given anchor vector w = (w1, . . . , ws) ∈ [0, 1]s and an ar-

bitrary vector k ∈ Ns
0 let the coefficient K̂s,γ,w(k,k) be defined in the

condition of Lemma 3.7.

Let PN = {x0, . . . ,xN−1} be an arbitrary net composed by N points

in [0, 1)s.

Then, the mean square worst-case error of the integration in the

space HSob,s,γ,w, by using the net PN , satisfies the equality

ẽ2 (HSob,s,γ,w;PN) = −
s∏

j=1

[
1 + γj

(
w2

j − wj +
1

3

)]

+
1

N2

N−1∑
n=0

N−1∑
m=0

Kds,s,γ,w(xn,xm).

Also, the equality holds

ẽ2 (HSob,s,γ,w;PN)

=
1

N2

N−1∑
n=0

N−1∑
m=0

∑
k∈Ns

0\{0}

K̂s,γ,w(k,k)Bsγk(xn)Bsγk(xm).

3.11 A notion of the anchored weighted
(ΓBs; γ;w)− diaphony

In this paragraph, we introduce the notion of an anchored weighted
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(ΓBs ; γ;w)−diaphony.

Definition 3.6 For an arbitrary integer N ≥ 1 the anchored

weighted (ΓBs ; γ;w)−diaphony of the first N elements of the sequence

ξ = (xn)n≥0 of points in [0, 1)s is defined as

FN(ΓBs ; γ;w; ξ)

=

 1

C(γ;w;Bs)

∑
k∈Ns

0\{0}

ρ(γ;w;Bs;k)

∣∣∣∣∣ 1N
N−1∑
n=0

Bsγk(xn)

∣∣∣∣∣
2
 1

2

,

where the coefficient ρ(γ;w;Bs;k) and the constant C(γ;w;Bs) are

defined respectively by the equalities (3.71) and (3.72).

In the next theorem, we show that the anchored weighted

(ΓBs ; γ;w)−diaphony is a quantitative measure for the irregularity

of the distribution of sequences. The following theorem holds:

Theorem 3.6 The sequence ξ is uniformly distributed in [0, 1)s if and

only if the limit equality

lim
N→∞

FN(ΓBs ; γ;w; ξ) = 0

holds for each choice of the vector γ of coordinate weights and the

anchor vector w.
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3.12 A relationship between the mean
square worst-case error and the an-
chored weighted (ΓBs; γ;w)−diaphony

In this paragraph of the thesis, we show the relationship that

exists between the mean square worst-case error of the integration in

the space HSob,s,γ,w and the anchored weighted (ΓBs ; γ;w)−diaphony

of the net of the nodes of the integration.

Theorem 3.7 Let PN be an arbitrary net of N points in [0, 1)s. Then,

the mean square worst-case error ẽ(HSob,s,γ,w;PN) of the integration in

the space HSob,s,γ;w, by using the net PN of nodes, and the anchored

weighted diaphony F (ΓBs ; γ;w;PN) of this net are related to the equal-

ity

ẽ(HSob,s,γ,w;PN) =
√
C(γ;w;Bs).F (ΓBs ; γ;w;PN),

where the constant C(γ;w;Bs) is defined by the equality (3.72).
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Contributions of the author

According to the presented in the thesis results, the author has the

claim to following contributions:

1. Define of the notion of multidimensional modified integrals of

the functions of the system ΓBs and prove some of their properties.

Some classical results of the quantitative theory of the uniformly dis-

tributed sequences, as the LeVeque’s inequality, the Koksma’s formula

and the Erdös-Turàn-Koksma inequality are presented in the terms of

the introduced modified integrals;

2. The integral Weyl’s criterion that a sequence to be uniformly

distributed is presented in the terms of these integrals;

3. A definition of the notion of mean square worst-case error of

the integration in Hilbert spaces, which is based on the arithmetic

related to the function system ΓBs is introduced. The presentation of

this mean square worst-case error as an ordinary worst-case error of

the integration in Hilbert spaces, generated by the associated digitally

Bs−adic shifted kernel is proved;

4. Two types of Sobolev spaces − the unanchored weighted Sobolev

space HSob,s,γ and the anchored weighted Sobolev space HSob,s,γ,w are
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considered. In the both cases of spaces, the formulas in explicit form

for the mean square worst-case error of the integration in these spaces

are proved.

5. The notions of the unanchored and anchored weighted diaphony

are introduced and it is proved that these types of the diaphony are

quantitative measures for the irregularity of the distribution of se-

quences in [0, 1)s.

6. The relationships that exist between the mean square worst-

case errors of the integration in the spaces HSob,s,γ and HSob,s,γ,w and

the corresponding types of the diaphony - the unanchored weighted

diaphony (ΓBs ; γ)−diaphony and the anchored weighted diaphony

(ΓBs ; γ;w)−diaphony are proved. In this way, the nature of the intro-

duced types of the diaphony is explained − they are the mean square

worst-case errors of the integration in appropriate Sobolev spaces.
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A list of the publications of the author

connected with the thesis

1. V. Grozdanov and E. Shabani, Multidimensional quasi-Monte

Carlo integration in weighted anchored Sobolev spaces, Comp. Rendus

Akad. Bulgare Sci. 77 (12) (2024), 1743-1751.

2. V. Grozdanov and E. Shabani, Some applications of the func-

tions of the system ΓBs to the theory of the uniformly distributed se-
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